2024
102. O-GlcNAc modification of HSP27 alters its protein interactions and promotes refolding of proteins through the BAG3/HSP70 co-chaperone. Javed A, Johnson OT, Balana AT, Volk RF, Langen A, Ahn BS, Zaro BW, Gestwicki JE, Pratt MR Protein Sci (2024) 33, e5173.
101. Carolyn Bertozzi: Building new bonds between molecules, fields, and communities. Pratt MR, Prescher JA Cell Chem Biol (2024) 31, P1383-1385.
100. O-GlcNAc modification of α-synuclein can alter monomer dynamics to control aggregation kinetics. Gamage K,* Wang B,* Hard ER,* Van T, Galesic A, Phillips GR, Pratt MR, Lapidus LJ ACS Chem Neurosci (2024) 15, 3044-3052. *Equal authorship
99. Potential for targeting small heat shock protein modifications. Wang B, Pratt MR Trends Pharmacol Sci (2024) doi:10.1016/j.tips.2024.04.002.
98. Backbone Modification Provides a Long-Acting Inverse Agonist of Pathogenic, Constitutively Active PTH1R Variants. Liu S, Daley EJ, Tran LM, Yu Z, Reyes M, Dean T, Khatri A, Levine PM, Balana AT, Pratt MR, Jüppner H, Gellman SH, Gardella TJ J Am Chem Soc (2024) 146, 6522-6529.
97. O-GlcNAc modification forces the formation of an α-synuclein amyloid -strain with notably diminished seeding activity and pathology. Balana AT,# Mahul-Mellier AL,# Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Affin S, Predretti R, Singh V, Lee VMY, Luk KC, Lashuel HA,* Pratt MR* Nat Chem Biol (2024) 20, 646-655. #Equal authorship; *co-corresponding
2023
96. Top/Midde-down characterization of α-synuclein glycoforms. Miller SA, Jeanne Dit Fouque K, Hard ER, Balana AT, Kaplan D, Voinov VG, Ridgeway ME, Park MA, Anderson GA, Pratt MR, Fernandez-Lima F Anal Chem (2023) 95, 18039-18045.
95. Understanding and exploiting the roles of O-GlcNAc in neurodegenerative diseases. Pratt MR* and Vocadlo DJ* J Biol Chem (2023) 299, 105411. *Co-corresponding.
94. Combining Non-canonical Amino Acid Mutagenesis and Native Chemical Ligation for Multiply Modifying Proteins: A case study of α-synuclein post-translational modifications. Galesic A, Pan B, Ramirez J, Rhoades E, Pratt MR,* Petersson EJ* Methods (2023) 218, 101-109. *Co-corresponding.
93. O-GlcNAc Modification Alters the Chaperone Activity of HSP27 Charcot-Marie-Tooth Type 2 (CMT2) Variants in a Mutation-Selective Fashion. Moon SP, Wang B, Ahn BS, Ryu AH, Hard ER, Javed A, Pratt MR ACS Chem Biol (2023) 18, 1705-1712.
92. A photoaffinity glycan labeling approach to investigate immunoglobulin glycan binding partners. Holborough-Kerkvliet MD, Mucignato G, Moons SJ, Psomiadou V, Konada RSK, Pedowitz NJ, Pratt MR, Kissel T, Koeleman CAM, Tjokrodirijo RTN, van Veelen PA, Huizinga T, van Schie KAJ, Wuhrer M, Kohler JJ, Bonger KM, Boltje TJ, Toes REM Glycobiology (2023) 33, 732-744.
91. HSP27 inhibitory activity against caspase-3 cleavage and activation by caspase-9 Is enhanced by chaperone O-GlcNAc modification in vitro. Wang B, Moon SP, Cutolo G, Javed A, Ahn BS, Ryu AH, Pratt MR ACS Chem Biol (2023) 18, 1698-1704.
90. A sticky solution to protein-selective sugar installation. Pratt MR Cell Res (2023) 33, 493-494.
89. Celebrating the contributions of Carolyn Bertozzi to Bioorthogonal Chemistry and its Application to Glycoscience (Editorial). Kramer JR, Pratt MR,* Schumann B Isr J Chem (2023) 63, e202300003.
2022
88. The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron. Ichikawa S, Flaxman HA, Xu W, Vallavoju N, Lloyd HC, Wang B, Shen D, Pratt MR, Woo CM Nature (2022) 610, 775-778.
87. Synthesis of O-GlcNAcylated small heat shock proteins. Moon, S. P.; Pratt, M. R. Methods Enzymol (2022) 675, 63-82.
86. Exo-Enzymatic Addition of Diazirine-Modified Sialic Acid to Cell Surfaces Enables Photocrosslinking of Glycoproteins. Yarravarapu N, Konada RSR, Darabedian N, Pedowitz NJ, Krishnamurthy SN, Pratt MR, Kohler JJ Bioconjug Chem (2022) 18, 781-787.
85. Generation of potent nd stabel GLP-1 analogues via “serine ligation.” Levine, P. M.; Craven, T. W.; Li, X.; Balana, A. T.; Bird, G. H.; Godes, M.; Salveson, P. J.; Erickson, P. W.; Lamb, M.; Ahlrichs, M.; Murphy, M.; Ogohara, C.; Said, M. Y.; Walensky, L. D.; Pratt, M. R.; Baker, D. ACS Chem Biol (2022) 17, 804-809.
84. A 2D and 3D cell culture protocol to study O-GlcNAc in sphingosine-1-phosphate mediated fibroblast contraction. Morales, M. M.; Pedowitz, N. J.; Pratt, M. R. STAR Protoc (2022) 3, 101113.
83. 4-Deoxy-4-fluoro-GalNAz (4FGalNAz) is a metabolic chemical reporter of O-GlcNAc modifications, highlighting the notable substrate flexibility of O-GlcNAc transferase. Jackson, E. G.;* Cutolo, G.;* Yang, B.; Yarravarapu, N.; Burns, M. W. N.; Bineva-Todd, G.; Roustan, C.; Thoden, J. B.; Lin-Jones, H. M.; van Kuppevelt, T. H.; Holden, H. M.; Schumann, B.; Kohler, J. J.; Woo, C. M.; Pratt M. R. ACS Chem Biol (2022) 17, 159-170. *Equal authorship
82. Multifaceted regulation of Akt by diverse C-terminal post-translational modifications. Salguero AL, Chen M, Balana AT, Chu N, Jiang H, Polanski BA, Bae H, Wright KM, Nathan S, Zhu H, Gabelli SB, Pratt MR, Cole PA ACS Chem Biol (2022) 17, 68-76.
2021
81. Hyaluronic acid fuels pancreatic cancer cell growth. Kim, P. K.; Holbrook, C. J.; Kerk, S. A.; Radyk, M.; Wisner, S.; Kremer, D. M.; Sajjakulnukit, P.; Andren, A.; Hou, S. W.; Trivedi, A.; Thurston, G.; Anand, A.; Yan, L.; Salamanca-Cardona, L.; Welling, S. D.; Zhang, L.; Pratt. M. R.; Keshari, K. R.; Ying, H.; Lyssiotis, C. eLife (2021) 10, e62645.
80. Methods for studying site-specific O-GlcNAc modifications: successes, limitations, and important future goals. Moon, S. P.; Javed, A.;* Hard, E. R.;* Pratt, M. R. JACS Au (2021) 2, 74-83. *Equal authorship
79. O-GlcNAcylation of high mobility group box 1 (HMGB1) alters its DNA binding and DNA damage processing activities. Balana, A. T.; Mukherjee A.; Nagpal, H.; Moon S. P.; Fierz B.; Vasquez K. M.; Pratt, M. R. J Am Chem Soc (2021) 143, 16030-16040.
78. Mechanistic roles for altered O-GlcNAcylation in neurodegenerative disorders. Balana, A. T.; Pratt, M. R. Biochem J. (2021) 478, 2733-2758.
77. Anomeric Fatty Acid Functionalization Prevents Nonenzymatic S-Glycosylation by Monosaccharide Metabolic Chemical Reporters. Pedowitz N. J.; Jackson, E. G.; Overhulse, J. M.; McKenna C. E.; Kohler, J. J.; Pratt, M. R. ACS Chem Biol (2021) 16, 1924-1929.
76. Your mother was right, washing matters: An alkyne-analog of ibuprofen reveals unwanted reactivity of aromatic compounds with protein during copper-catalyzed click chemistry. Cutolo, G.; Shankar, S. N.; Pratt, M. R. Bioorg Med Chem Lett (2021) 48, 128260.
75. Consequences of post-translational modifications on amyloid proteins as revealed by protein semisynthesis. Moon, S. P.*.; Balana, A. T.*; Pratt, M. R. Curr Opin Chem Biol (2021) 64, 76-89. *Equal authorship
74. O-GlcNAc modification of MYPT1 modulates lysophosphatidic acid (LPA)-induced cell contraction in fibroblasts. Morales, M. M.; Pedowitz, N. J.; Pratt, M. R. J Biol Chem (2021) 296, 100800.
73. O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity. Balana, A. T.; Levine, P. M.; Craven, T. W.; Mukherjee, S.; Pedowitz N. J.; Moon, S. P.; Takahashi, T. T.; Becker, C. F. W.; Baker, D.; Pratt, M. R. Nat Chem (2021) 13, 441-450.
72. Design and synthesis of metabolic chemical reporters for the visualization and identification of glycoproteins. Pedowitz, N. J.; Pratt, M. R. RSC Chem Biol (2021) 2, 306-321.
71. In vivo experimental and analytical studies for bevacizumab diffusion coefficient measurement in the rabbit vitreous humor. Zhang, S.; Penkova A.; Humayun, M.; Martinez-Camarillo, J. C.; Tadle, A. C.; Galesic, A.; Thompson, M. E.; Pratt, M. R.; Gonzalez-Calle, A.; Sadhal, S. S. J Heat Transfer (2021) 1443, 032101.
70. O-GlcNAcylated peptides and proteins for structural and functional studies. Balana, A. T.*; Moon, S. P.*; Pratt, M. R. Curr Opin Struct Biol (2021) 68, 84-93. *Equal authorship
69. Comparison of N-acetyl-glucosamine to other monosaccharides reveals structural differences for the inhibition of α-synuclein aggregation. Galesic, A.*; Rakshit, A.*; Cutolo, G.; Palos Pacheco, R.; Balana, A. T.; Moon, S. P.; Pratt, M. R. ACS Chem Biol (2021) 16, 14-19. *Equal authorship
68. MYPT1 O-GlcNAc modification regulates sphingosine-1-phosphate mediated contraction. Pedowitz, N. J.; Batt, A. R.; Darabedian, N.; Pratt, M. R. Nat Chem Biol (2021) 17, 169-177.
2020
67. Traceless native chemical ligation of lipid-modified peptide surfactants by mixed micelle formation. Jin, S.; Brea R. J.; Rudd A. K.; Moon, S. P.; Pratt, M. R.; Devaraj N. K. Nat Commun (2020) 11, 2793.
66. Metabolic engineering of glycans. Jackson, E. G.;* Pedowitz, N. J.;* Pratt, M. R. Comprehensive Glycoscience 2nd Edition. *Equal authorship
65. O-Acetylated chemical reporters of glycosylation can display metabolism-dependent background labeling of proteins but are generally reliable tools for the identification of glycoproteins. Darabedian, N.; Yang, B.; Ding, R.; Cutolo, G.; Zaro, B. W.; Woo, C. M.; Pratt, M. R. Front Chem (2020) 8, 313.
64. Metabolic labeling for the visualization and identification of potentially O-GlcNAc-modified proteins. Pedowitz, N. J.; Zaro, B. W.; Pratt, M. R. Curr Prot Chem Biol (2020) 12, e81.
63. Translation of microbiota short-chain fatty acid mechanisms affords anti-infective acyl-salicylic acid derivatives. Yang, X; Forster, E. R.; Darabedian, N.; Kim A. T.; Pratt, M. R.; Shen A.; Hang H. C. ACS Chem Biol (2020) 15, 1141-1147.
62. Click chemistry in proteomic investigations. Parker, C. G;* Pratt, M. R.* Cell (2020) 180, 605-632. *Co-corresponding
61. Ubiquitination can change the structure of the α-synuclein amyloid fiber in a site selective fashion. Moon, S. P.; Balana, A. T.; Galesic, A.; Rakshit, A.; Pratt, M. R. J Org Chem (2020) 85, 1548-1555.
60. Investigating the effects of O-GlcNAc modifications in Parkinson’s disease using semisynthetic α-synuclein. Galesic, A; Pratt, M. R. Methods Mol Biol (2020) 2133, 313-326.
59. Inhibiting the hexosamine biosynthetic pathway lowers O-GlcNAcylation levels and sensitizes cancer to environmental stress Walter, L. A.;* Lin, Y. H.;* Halbrook C. J.; Chuh K. N.; He L.; Pedowitz, N. J.; Batt, A. R.; Brennan, C. K.; Stiles, B. L.; Lyssiotis, C. A.; Pratt, M. R. Biochemistry (2020) 59, 3169-3179. *Equal authorship
2019
58. O-GlcNAc engineering of GPCR peptide-agonists improves their stability and in vivo activity. Levine, P. M.; Balana, A. T.; Sturchler, E.; Koole, C.; Noda H.; Zarzycka, B.; Daley, E. J.; Truong, T. T.; Katritch V.; Gardella, T. J.; Wootten, D.; Sexton, P. M.; McDonald, P.; Pratt, M. R. J Am Chem Soc (2019) 141, 14210-14219. *Selected for the 2020 JACS virtual young-investigator issue.
57. Identifying potentially O-GlcNAcylated proteins using metabolic labeling, bioorthogonal enrichment, and Western blotting. Darabedian, N.; Pratt, M. R. Methods Enzymol (2019) 622, 293-307.
56. α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease. Levine, P. M.;* Galesic, A.;* Balana, A. T.;* Mahul-Mellier, A.-L.; Navarro, M. X.; De Leon, C. A.; Lashuel, H. A.; Pratt, M. R. Proc Natl Acad Sci USA (2019) 116, 1511-1516. *Equal authorship
2018
55. Bioorthogonal profiling of a cancer cell proteome identifies a large set of 3-bromopyruvate targets beyond glycolysis. Darabedian, N.; Chen, T. C.; Molina, H.; Pratt, M. R.;* Schönthal, A. H.* ACS Chem Biol (2018) 13, 3054-3058. *co-corresponding authors
54. Asking more from metabolic oligosaccharide engineering. Gilormini, P.-A.; Batt, A. R.; Pratt, M. R.; Biot C. Chem Sci (2018) 9, 7585-7595.
53. Optimization of chemoenzymatic mass-tagging by strain-promoted cycloaddition (SPAAC) for the determination of O-GlcNAc stoichiometry by Western blotting. Darabedian, N.; Thompson, J.; Chuh, K. N.; Hsieh-Wilson, L. C.; Pratt, M.R. Biochemistry (2018) 57, 5769-5774.
52. Simple and efficient preparation of O- and S-GlcNAcylated amino acids through InBr3-catalyzed synthesis of β-N-acetylglycosides from commercially available reagents. De Leon, C. A.; Lang, G.; Saavedra, M. I.; Pratt, M.R. Org Lett (2018) 20, 5032-5035.
51. Azide- and alkyne-bearing metabolic chemical reporters of glycosylation show structure-dependent feedback inhibition of the hexosamine biosynthetic pathway. Walter, L. A.; Batt, A. R.; Darabedian, N.; Zaro, B. W.; Pratt, M.R. ChemBioChem (2018) 19, 1918-1921.
50. The metabolic chemical reporter 6-azido-6-deoxy-glucose further reveals the substrate promiscuity of O-GlcNAc transferase and catalyzes the discovery of intracellular protein modification by O-glucose. Darabedian, N.; Gao, J.; Woo, C. M.; Pratt, M. R. J Am Chem Soc (2018) 140, 7092-7100.
49. Revolutionizing our understanding of amyloidogenic proteins by cryo-electron microscopy. Levine, P. M.; Pratt, M. R. Biochemistry (2018) 57, 895-896. *Viewpoint
2017
48. O-GlcNAc modification inhibits the calpain-mediated cleavage of α-synuclein. Levine, P. M.; De Leon, C. A.; Galesic, A.; Balana, A.; Marotta, N. P.; Lewis Y. E.; Pratt, M. R. Bioorg Med Chem (2017) 25, 4997-4982.
47. The sulfur-linked analog of O-GlcNAc (S-GlcNAc) is an enzymatically stable and a reasonable structural-surrogate for O-GlcNAc at the peptide and protein levels. De Leon, C. A.; Levine, P. M.; Craven, T. W.; Pratt, M. R. Biochemistry (2017) 56, 3507-3517.
46. The new chemical reporter 6-alkynyl-6-deoxy-GlcNAc (6AlkGlcNAc) reveals O-GlcNAc modification of the apoptotic caspases that can block the cleavage/activation of caspase-8. Chuh, K. N.; Batt A. R.; Zaro, B. W.; Darabedian, N.; Marotta, N. P.; Brennan, C. K.; Amirhekmat, A.; Pratt, M. R. J Am Chem Soc (2017) 139, 7872-7885.
45. Metabolic chemical reporters of glycans exhibit cell-type selective metabolism and glycoprotein labeling. Batt, A. R.; Zaro, B. W.; Navarro, M. X.; Pratt, M. R. ChemBioChem (2017) 18, 1177-1182.
44. O-GlcNAcylation of α-synuclein at serine 87 reduces aggregation without affecting membrane binding. Lewis, Y. E.; Galesic, A.; Levine, P. M.; De Leon, C. A.; Lamiri, N.; Brennan, C. K.; Pratt, M. R. ACS Chem Biol (2017) 12, 1020-1027.
43. The small molecule 2-azido-2-deoxy-glucose is a metabolic chemical reporter of O-GlcNAc modifications in mammalian cells, revealing an unexpected promiscuity of O-GlcNAc transferase. Zaro, B. W.;* Batt, A., R.;* Chuh, K. N.; Navarro, M. X.; Pratt, M. R. ACS Chem Biol (2017) 12, 787-794. *Equal authorship
2016
42. Synthesis of a Bis-thio-Acetone (BTA) Analog of the Lysine Isopeptide Bond and its Application to Investigate the effects of Ubiquitination and SUMOylation on α-Synuclein Aggregation and Toxicity. Lewis, Y. E.;* Abeywardana, T.;* Lin, YH.; Galesic, A.; Pratt, M. R. ACS Chem Biol (2016) 11, 931-942. *Equal authorship
41. Chemical Methods for Encoding and Decoding Posttranslational Modifications. Chuh, K. N.; Batt, A. R.; Pratt, M. R. Cell Chem Biol (2016) 23, 86-107.
2015
40. O-GlcNAc Modification Blocks the Aggregation and Toxicity of the Protein α-Synuclein Associated with Parkinson's Disease. Marotta, N. P.; Lin, YH; Lewis, Y. E.; Ambroso, M. R.; Zaro, B. W.; Roth, M. T.; Arnold, D. B.; Langen, R.; Pratt, M. R. Nat Chem (2015) 7, 913-920.
39. Synthetic Proteins and Peptides for the Direct Interrogation of α-Synuclein Posttranslational Modifications. Pratt, M. R.; Abeywardana, T.; Marotta, N. P. Biomolecules (2015) 5, 1210-1227.
38. Chemistry-Enabled Methods for the Visualization of Cell-Surface Glycoproteins in Metazoans. Chuh, K. N.; Pratt, M. R. Glycoconj. J. (2015) 32, 443-454.
37. The Extent of Inhibition of α-Synuclein Aggregation In Vitro by SUMOylation is Conjugation Site- and SUMO isoform-selective. Abeywardana, T.; Pratt, M. R. Biochemistry (2015) 54, 959-961.
36. Chemical Methods for the Proteome-Wide Identification of Posttranslationally Modified Proteins. Chuh, K. N.; Pratt, M. R. Curr. Opin. Chem. Biol (2015) 24, 27-37.
2014
35. Chemoproteomics Reveals Toll-like Receptor Fatty Acylation. Chesarino, N. M.; Hach, J. C.; Chen, J. L.; Zaro B. W.; Rajaram, M. V.; Turner, J; Schlesinger L. S.; Pratt, M. R.; Hang, H. C.; Yount J. S. BMC Biology (2014) 12, 91.
34. Changes in Metabolic Chemical-Reporter Structure Yield a Selective Probe of O-GlcNAc Modification. Chuh, K. N.;* Zaro, B. W.;* Piller, F.; Piller, V.; Pratt, M.R. J. Am. Chem. Soc. (2014) 136, 12283-12295. *Equal authorship
33. A Chemical Reporter for Visualizing Metabolic Cross-Talk between N-Acetyl-Glucosamine Metabolism and non-Carbohydrate Protein Modification. Zaro B. W.; Chuh, K. N.; Pratt, M.R. ACS Chem. Biol. (2014) 9, 1991-1996.
32. Using Chemistry to Investigate the Molecular Consequences of Protein Ubiquitination. Abeywardana, T.; Pratt, M.R. ChemBioChem (2014) 15, 1547-1554.
31. Identification of O-GlcNAc Modification Targets in Retinal Pericytes: Implications in the Pathogenesis of Diabetic Retinopathy. Gurel, Z.;* Zaro, B. W.; Pratt, M.R.*; Sheibani, N. PLoS One (2014) 9, e95561. *co-corresponding authors
30. A Dual Small-Molecule Rheostat for Precise Control of Protein Concentration in Mammalian Cells. Lin, YH.; Pratt, M. R. ChemBioChem (2014) 15, 805-809.
2013
29. Molecular Probes for Protein Glycosylation. Hang, H. C.; Pratt, M. R. Book Chapter in: Chemistry, Molecular Sciences and Chemical Engineering (2013) Elsevier Publishing.
28. Site-Specific Differences in Proteasome-Dependent Degradation of Monoubiquitinated α-Synuclein. Abeywardana, T.; Lin YH.; Rott R.; Engelender, S.; Pratt, M. R. Chem. Biol. (2013) 20, 1207-1213.
27. An Alkyne-Aspirin Chemical Reporter for the Detection of Aspirin-Dependent Protein Modification in Living Cells. Bateman, L. A.; Zaro, B. W.; Miller, S. M.; Pratt, M. R. J. Am. Chem. Soc. (2013) 135,14568-14573.
26. N-Propargyloxycarbamate Monosaccharides as Metabolic Chemical Reporters of Carbohydrate Salvage Pathways and Protein Glycosylation. Bateman, L. A.; Zaro, B. W.; Chuh, K. N.; Pratt M. R. ChemComm. (2013) 49, 4328-4330. *‘Emerging Investigators 2013’ themed issue
25. Incorporation of Unnatural Sugars for the Identification of Glycoproteins. Zaro, B. W.; Hang, H. C.; Pratt, M. R. Methods Mol. Biol. (2013) 951, 57-67.
2012
24. O-GlcNAc Modification Prevents Peptide-Dependent Acceleration of α-Synuclein Aggregation. Marotta, N. P.; Cherwien, C. A.; Abeywardana T.; Pratt M. R. ChemBioChem (2012) 13, 2665-2670
23. Small-Molecule Reprogramming of Cancer Metabolism. Pratt M. R. Chem. Biol. (2012) 19, 1084-1085. *Preview of Kung et al. Chem. Biol. 2012, 19, 1187-1198.
22. Semi-Synthetic, Site-Specific Ubiquitin Modification of α-Synuclein Reveals Differential Effects on Aggregation. Meier, F.; Abeywardana, T.; Dhall, A.; Marotta, N. P.; Varkey, J.; Langen, R.; Chatterjee, C.; Pratt M. R. J. Am. Chem. Soc. (2012) 134, 5468-5471.
2011
21. Robust in-gel Fluorescence Detection of Mucin-type O-Linked Glycosylation. Zaro, B. W.; Bateman, L. A.; Pratt, M. R. Bioorg. Med. Chem. Lett. (2011), 21, 5062-5066. *Issue honoring Prof. Carolyn Bertozzi for 2011 Tetrahedron Young Investigator Award
20. Chemical Reporters for Fluorescent Detection and Identification of O-GlcNAc Modified Proteins Reveal Glycosylation of the Ubiquitin Ligase NEDD4-1. Zaro, B. W.; Yang, Y. Y.; Hang, H. C.; Pratt, M. R. Proc. Natl. Acad. Sci. USA (2011) 108, 8146-8151.
2010
19. Precise Control of Protein Concentration in Living Cells. Lau, H.D., Yaegashi, J.; Zaro, B. W.; Pratt, M. R. Angew. Chem. Int. Ed. (2010) 49, 8458-8461.
Prior to Independent Career
18. N1rp1b/Nalp1b-Dependent Pyroptosis Involves Lysosomal Membrane Permeabilization, Cystosolic Cathepsin Activity and Bid Cleavage. Averette-Mirrashidi, K. M.; Pratt, M. R.; Yang, Y.; Bassilian, S.; Whitelegge, J. P.; Loo, J. A.; Muir, T. W.; Bradley, K. A. PLoS One (2009) 4, e7913
17. Structure activity analysis of semisynthetic nucleosomes: Mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B. McGinty, R. K.; Koehn, M.; Chatterjee, C.; Chiang, K. P.; Pratt, M. R.; Muir, T. W. ACS Chem. Biol. (2009) 4, 958-968.
16. Direct Measurement of Cathespin B Activity in the Cytosol of Apoptotic Cells by an Activity Based Probe. Pratt, M. R.; Sekedat, M. D.; Chiang, K. P.; Muir, T. W. Chem. Biol. (2009) 16, 1001-1012.
15. A Full Length Group 1 Bacterial Sigma Factor Adopts a Compact Structure Incompatible with DNA Binding. Schwartz, E. C.; Shekhtman, A.; Dutta, K.; Pratt, M. R.; Cowburn, D.; Darst, S.; Muir, T. W. Chem. Biol. (2008) 15, 1091-1103.
14. Covalent Capture of Phospho-Dependent Protein Oligomerization by Site-Specific Incorporation of a Diazirine Photo-Crosslinker. Vila-Perello, M.; Pratt, M. R.; Tulin, F.; Muir, T. W. J. Am. Chem. Soc. (2007) 129, 8068-8069.
13. Small Molecule-Mediated Rescue of Protein Function by an Inducible Proteolytic Shunt. Pratt, M. R.; Schwartz, E. C.; Muir, T. W. Proc. Natl. Acad. Sci. USA (2007) 104, 11209-11214.
12. Synthesis of Large Biomolecules from Chemical Biology (Schreiber, S. L.; Kappor, T; Wess G.; Eds.). Pratt, M. R.; Muir, T. W. WILEY-VCH (Weinheim) (2007) pg. 537-561.
11. Synthetic Glycopeptides and Glycoproteins as Tools for Biology. Pratt, M. R.; Bertozzi, C. R. Chem. Soc. Rev. (2005) 34, 58-68.
10. Identification, Function and Structure of the Mycobacterial Sulfotransferase that Initiates Sulfolipid-1 Biosynthesis. Mougous, J. D.; Petzold, C. J.; Senaratne, R. H.; Lee, D. H.; Akey, D. L.; Lin, F. L.; Munchel, S. E.; Pratt, M. R.; Riley, L. W.; Leary, J. A.; Berger, J. M.; Bertozzi, C. R. Nature Struct. Mol. Biol. (2004) 11, 721-729.
9. Deconvoluting the Functions of Polypeptide N-α-Acetylgalactosaminyltransferase (ppGalNAcT) Family Members by Glycopeptide Substrate Profiling. Pratt, M. R.; Hang, H. C.; Ten Hagen, K. G.; Rarick, J.; Gerken, T. A.; Tabak, L. A.; Bertozzi, C. R. Chem. Biol. (2004) 11, 1009-1016.
8. Trehalose is Required for Growth of Mycobacterium smegmatis. Woodruff, P. J.; Carlson, B. L.; Siridechadilok, B.; Pratt, M. R.; Senaratne, R. H.; Mougous, J. D.; Riley, L. W.; Williams, S. J.; Bertozzi, C. R. J. Biol. Chem. (2004) 279, 28835-28843.
7. Synthesis of 6-sulfo Sialyl Lewis X Glycans Corresponding to the L-Selectin Ligand “Sufloadhesin.” Pratt, M. R.; Bertozzi, C. R. Org. Lett. (2004) 6, 2345-2348.
6. Probing Glycosyltransferase Activities with the Staudinger Ligation. Hang, H. C.; Yu, C.; Pratt, M. R.; Bertozzi, C. R. J. Am. Chem. Soc. (2004) 126, 6-7.
5. Formation of 1,1-α,α-Glycosidic Bonds using Intramolecular Aglycone Delevery. A Convergent Synthesis of Trehalose. Pratt, M. R.; Leigh, C. L.; Bertozzi, C. R. Org. Lett. (2003) 5, 3185-3188.
4. Chemoselective Ligation Applied to the Synthesis of a N-linked Glycoform of CD52. Pratt, M. R.; Bertozzi, C. R. J. Am. Chem. Soc. (2003) 125, 6149-6159.
3. Synthesis of Thioether-Linked Analogs of the 2,3-STF and MECA-79 Antigens: Mucin-Type Oligosaccharides Associated with Cancer and Inflammation. Marcaurelle, L. A.; Pratt, M. R.; Bertozzi, C. R. ChemBioChem (2003) 4, 224-228.
2. Homogeneous Glycopeptides and Glycoproteins for Biological Investigation. Grogan, M. J.; Pratt, M. R.; Marcaurelle, L. A.; Bertozzi, C. R. Ann. Rev. Biochem. (2002) 71, 593-634.
1. Solid-Phase Synthesis of O-Linked Glycopeptide Analogs of Enkephalin. Mitchell, S.M.; Pratt, M.R.; Hruby, V.J.; Polt, R.L. J. Org. Chem. (2001) 66, 2327-2342